Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404761, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664844

RESUMEN

Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu-1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.

2.
J Mol Model ; 28(7): 195, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727345

RESUMEN

A fluorescent probe Pi with the excited-state intramolecular proton transfer (ESIPT) properties was synthesized and used to detect the phosgene in solution and gas phases. However, the detection mechanism of the fluorescent probe needs to be further studied. Herein, the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods were adopted to explore the molecular structures and electronic spectra properties of probe and its product Pio after reacting with phosgene. Through analysis for molecular structure parameters and infrared vibrations accompanied with the hydrogen bond of Pi, it is confirmed that the intramolecular hydrogen bond of Pi is enhanced under light excitation, which illustrates the occurrence of ESIPT reaction combined with the scanned potential energy curves. It can be seen from the simulated spectra that Pi shows double fluorescence through ESIPT process, while the fluorescent product Pio exhibits the single fluorescence due to the disappearance of intramolecular hydrogen bond. Through the study on the structure and optical properties of Pi and Pio, it can be helpful to deeply understand the intrinsic mechanism of the detection of phosgene by the Pi molecule probe, which also supplies a reference to the further study about the fluorescence probe.


Asunto(s)
Fosgeno , Protones , Colorantes Fluorescentes/química , Modelos Moleculares , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...